

Communication

Organocatalytic Asymmetric Direct Alkylation of I-Diazoester via C–H Bond Cleavage

Daisuke Uraguchi, Keiichi Sorimachi, and Masahiro Terada

J. Am. Chem. Soc., 2005, 127 (26), 9360-9361• DOI: 10.1021/ja051922a • Publication Date (Web): 09 June 2005

Downloaded from http://pubs.acs.org on March 25, 2009

More About This Article

Additional resources and features associated with this article are available within the HTML version:

- Supporting Information
- Links to the 25 articles that cite this article, as of the time of this article download
- Access to high resolution figures
- Links to articles and content related to this article
- Copyright permission to reproduce figures and/or text from this article

View the Full Text HTML

Published on Web 06/09/2005

Organocatalytic Asymmetric Direct Alkylation of α-Diazoester via C–H Bond Cleavage

Daisuke Uraguchi,[†] Keiichi Sorimachi, and Masahiro Terada*

Department of Chemistry, Graduate School of Science, Tohoku University, Sendai 980-8578, Japan

Received March 25, 2005; E-mail: mterada@mail.tains.tohoku.ac.jp

The catalytic asymmetric sp² C–H bond addition reaction to carbonyl, imine, and α , β -unsaturated carbonyl compounds, such as Friedel–Crafts (F–C) alkylations, is a powerful yet challenging organic transformation.¹ It has attracted much attention from industry as well as the academic community due to its atom efficiency.² Recently, highly enantioselective 1,2- and 1,4-F–C alkylations were achieved using metal-based Lewis acid³ and small organomolecule^{4,5} catalysts. Mechanistically, these F–C alkylations are regarded to proceed via an addition–elimination pathway (Scheme 1a). For instance, an electron-rich aromatic or heteroaromatic compound attacks an activated sp² carbon, and subsequent deprotonation provides an F–C alkylation product exclusively.

In conjunction with our recent efforts to develop chiral Brønsted acids for catalyzed asymmetric carbon-carbon bond forming reactions,⁶⁻⁹ we recently demonstrated a highly enantioselective 1,2-aza-F-C reaction of a furan derivative to N-protected aldimines catalyzed by chiral phosphoric acid.⁹ In consideration of the catalytic cycle of this reaction, the phosphate anion receives a proton in the elimination stage, and it is even possible that the phosphoryl oxygen functions as an intracomplex basic site. Diazoacetate, which has an electronically unique sp^2 carbon, is a rather interesting motif from this viewpoint because of the similarity of the addition intermediates A and B. Although diazoacetate is commonly used in aziridine formation reactions (aza-Darzens reaction) under Lewis¹⁰ and Brønsted¹¹ acidic conditions (Scheme 1b), a possible intracomplex deprotonation from intermediate C by phosphoryl oxygen may allow direct alkylation of diazoacetate via C-H bond cleavage, giving an α -diazo- β -amino acid ester through an "F-Ctype" pathway (Scheme 1c). Thus, treatment of ethyl diazoacetate

[†] Present address: Sagami Chemical Research Center, Ayase 252-1193, Japan.

(1a) with an acyl imine (2, R', Ar = Ph) was attempted at room temperature in chloroform-d1 under the influence of 2 mol % of achiral phosphoric acid (4, eq 1). As desired, clean conversion of the starting imine (2, R', Ar = Ph) to the direct alkylation product (3a, R', Ar = Ph) was observed within 1 h, and the product was isolated in 70% yield. Although it is difficult to clarify the action of the phosphoryl oxygen work in the deprotonation stage, this result indicates that a phosphoric acid catalyst such as 4 can efficiently promote direct alkylation of α -diazoesters via C-H bond cleavage.¹² Herein, we describe development of the asymmetric form by means of a binaphthol monophosphoric acid catalyst.¹³

Catalyst (R)- 5^{14} provided the best enantioselectivity of the reactions attempted, and its selectivity was dramatically influenced by tuning of the ester moiety of 1. For example, the 79% ee obtained for the ethyl ester was ameliorated to 84% ee when using isopropyl ester in toluene at room temperature and was further improved to 90% ee using commercially available *tert*-butyl diazoacetate (1b) as a substrate. Interestingly, the electronic character of the acyl protective group of the imine nitrogen also strongly affected selectivity as well as reactivity (Table 1). Introduction of ortho- or meta-substituents to the acyl aromatic moiety indicated a small effect on the selectivity (entries 1-6). However, para-substituents strongly impacted on the reaction selectivity as well as frequency and introduction of electron-donating substituents provided better results (entries 7-9). The highest selectivity was displayed by paradimethylaminobenzoyl aldimine (2, $R' = p-Me_2N-C_6H_4$, Ar = Ph) although with a slight reduction in reaction frequency (entry 10). Fortunately, a prolonged reaction time improved the yield (entry 11).

Experiments that probe the scope of this transformation are summarized in Table 2. Para-substituted aromatics showed generally excellent enantioselectivity irrespective of its electronic character (entries 1-4). Ortho- and meta-substitution as well as a fused ring system was also tolerated (entries 5-8).

Next, we attempted to derive the common synthetic intermediates, β -amino acid derivatives, from **3b**. Hydrogenation of the diazo

Table 1. Electronic Effect of Acyl Protective Group on the Imine Nitrogen (Eq 1, Ar = Ph, **1b**, and (*R*)-**5** Were Used)^{*a*}

entry	R′	yield (%) ^b	ee (%) ^c
1	Ph	59	90
2	o-Br-C ₆ H ₄ -	80	90
3	o-Me-C ₆ H ₄ -	84	90
4	o-MeO-C ₆ H ₄ -	77	92
5	<i>m</i> -MeO-C ₆ H ₄ -	76	91
6	1-naphthyl—	82	90
7	p-Br-C ₆ H ₄ -	68	86
8	p-Me-C ₆ H ₄ -	72	91
9	p-MeO-C ₆ H ₄ -	73	93
10	$p-Me_2N-C_6H_4-$	57	96
11^{d}	p-Me ₂ N-C ₆ H ₄ -	81	97

^{*a*} Unless otherwise noted, all reactions were carried out with 0.1 mmol of **1** in 1 mL of toluene at room temperature for 5 h. ^{*b*} Isolated yield. ^{*c*} Enantiomeric excess was determined by HPLC analysis. See Supporting Information for details. ^{*d*} The reaction was carried out for 24 h.

Table 2. Organocatalyzed Direct Alkylation of *tert*-Butyl Diazoacetate (**1b**) with Representative Aldimine Derivatives (**2**) (Eq 1, R' = p-Me₂N-C₆H₄, **1b**, and (*R*)-**5** Were Used)^{*a*}

entry	Ar	yield (%) ^b	ee (%) ^c
1	p-F-C ₆ H ₄ -	74	97
2	p-Ph-C ₆ H ₄ -	71	97
3	<i>p</i> -Me-C ₆ H ₄ -	74	97
4	<i>p</i> -MeO-C ₆ H ₄ -	62	97
5^d	<i>o</i> -F-C ₆ H ₄ -	89	91
6	o-MeO-C ₆ H ₄ -	85	91
7	<i>m</i> -F-C ₆ H ₄ -	84	93
8^d	$\langle \mathbf{U} \rangle$	75	95

^{*a*} All reactions were carried out with 0.1 mmol of **1** in 1 mL of toluene at room temperature for 24 h. ^{*b*} Isolated yield. ^{*c*} Enantiomeric excess was determined by HPLC analysis. See Supporting Information for details. ^{*d*} 3 mol % of (*R*)-**5** was used.

^{*a*} Conditions: (i) PtO₂, H₂, EtOAc/AcOH, room temperature (rt), 79%. (ii) Tf₂O, 2,6-lutidine, CH₂Cl₂, -78 to 0 °C, then MeOH, 0 °C to rt, 70%. (iii) Pd/C, H₂, MeOH, rt, 60%. (iv) Oxone, NaHCO₃, H₂O/acetone/CH₂Cl₂, 0 °C to rt. (v) NaBH₄, MeOH, -78 °C, anti/syn = >99:<1, 95% (in two steps).

moiety of **3b** (R' = p-Me₂N-C₆H₄, Ar = Ph, 97% ee) with Adams' catalyst under a hydrogen atmosphere and successive deprotection provided β -amino acid *tert*-butylester (**6**) without any loss of enantiomeric excess. α -Oxo-functionality was efficiently introduced by oxone, and subsequent diastereoselective reduction enabled us to synthesize *anti*- β -amino- α -hydroxy acid *tert*-butylester (**7**) from **3b** (R', Ar = Ph, recrystallized, >99% ee).¹⁵ These short step

syntheses of β -amino acid derivatives with high optical purity by means of functionalization of diazo moiety clearly highlight the diverse synthetic potential of this direct asymmetric transformation.

In conclusion, a new variant of phosphoric acid-catalyzed C–C bond forming reaction, direct alkylation of α -diazoester, via C–H bond cleavage was presented. The resulting products, β -amino- α -diazoesters, are highly functionalized and useful synthetic precursors for various types of β -amino acids. Further synthetically useful direct transformations promoted by chiral phosphoric acid catalysts are underway.

Acknowledgment. This work was partially supported by a Grant-in-Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science and Technology, Japan, and The Sumitomo Foundation.

Supporting Information Available: Representative experimental procedures and spectroscopic data for **2**–**7**. This material is available free of charge via the Internet at http://pubs.acs.org.

References

- For reviews on stereoselective F-C reaction, see: (a) Jørgensen, K. A. Synthesis 2003, 1117. (b) Bandini, M.; Melloni, A.; Umani-Ronchi, A. Angew. Chem., Int. Ed. 2004, 43, 550.
- (2) For reviews on atom economy, see: (a) Trost, B. M. Science 1991, 254, 1471. (b) Trost, B. M. Acc. Chem. Res. 2002, 35, 695.
- (3) For other recent examples of Lewis acid-catalyzed asymmetric F-C reaction, see: (a) Evans, D. A.; Scheidt, K. A.; Fandrick, K. R.; Lam, H. W.; Wu, J. J. Am. Chem. Soc. 2003, 125, 10780. (b) Yuan, Y.; Wang, X.; Li, X.; Ding, K. J. Org. Chem. 2004, 69, 146. (c) Zhou, J.; Tang, Y. Chem. Commun. 2004, 432. (d) Zhou, J.; Ye, M.-C.; Huang, Z.-Z.; Tang, Y. J. Org. Chem. 2004, 69, 1309.
- (4) For reviews on enantioselective organocatalysis, see: (a) Dalko, P. I.; Moisan, L. Angew. Chem., Int. Ed. 2004, 43, 5138. (b) Special issue on enantioselective organocatalysis: Acc. Chem. Res. 2004, 37, 487.
- (5) For enantioselective organocatalytic 1,4-F-C alkylation of aromatic or heteroaromatic compounds, see: (a) Paras, N. A.; MacMillan, D. W. C. J. Am. Chem. Soc. 2001, 123, 4370. (b) Austin, J. F.; MacMillan, D. W. C. J. Am. Chem. Soc. 2002, 124, 1172. (c) Paras, N. A.; MacMillan, D. W. C. J. Am. Chem. Soc. 2002, 124, 7894.
- (6) For a review on Brønsted acid catalysis, see: Schreiner, P. R. Chem. Soc. Rev. 2003, 32, 289.
- (7) For selected recent examples of asymmetric Brønsted acid catalysis, see: (a) Huang, Y.; Unni, A. K.; Thadani, A. N.; Rawal, V. H. Nature 2003, 424, 146. (b) McDougal, N. T.; Schaus, S. E. J. Am. Chem. Soc. 2003, 125, 12094. (c) Okino, T.; Hoashi, Y.; Takemoto, Y. J. Am. Chem. Soc. 2003, 125, 12672. (d) Nugent, B. M.; Yoder, R. A.; Johnston, J. N. J. Am. Chem. Soc. 2004, 126, 3418. (e) Joly, G. D.; Jacobsen, E. N. J. Am. Chem. Soc. 2004, 126, 3418. (e) Joly, G. D.; Jacobsen, E. N. J. Am. Chem. Soc. 2004, 126, 4102. (f) Akiyama, T.; Itoh, J.; Yokota, K.; Fuchibe, K. Angew. Chem., Int. Ed. 2004, 43, 1566. (g) Thadani, A. N.; Stankovic, A. R.; Rawal, V. H. Proc. Natl. Acad. Sci. U.S.A. 2004, 101, 5964. (i) Yoon, T. P.; Jacobsen, E. N. Angew. Chem., Int. Ed. 2005, 44, 466. (j) Momiyama, N.; Yamamoto, H. J. Am. Chem. Soc. 2005, 127, 1080. (k) Unni, A. K.; Takenaka, N.; Yamamoto, H.; Rawal, V. H. J. Am. Chem. Soc. 2005, 123.
- (8) Uraguchi, D.; Terada, M. J. Am. Chem. Soc. 2004, 126, 5356.
- (9) Uraguchi, D.; Sorimachi, K.; Terada, M. J. Am. Chem. Soc. 2004, 126, 11804.
- (10) (a) Antilla, J. C.; Wulff, W. D. Angew. Chem., Int. Ed. 2000, 39, 4518.
 (b) Redlich, M.; Hossain, M. M. Tetrahedron Lett. 2004, 45, 8987 and references cited therein.
- (11) Williams, A. L.; Johnston, J. N. J. Am. Chem. Soc. 2004, 126, 1612 and references cited therein.
- (12) In the case of N-acyl imines, the low nucleophilicity of the resulting amide nitrogen might be considered the cause of this selective transformation. Unfortunately, N-alkyl-protected imines, which are commonly used for aziridine formation under acidic conditions, did not react under our reaction conditions.
- (13) Chiral auxiliary-controlled base promoted similar transformations have been reported. See: Zhao, Y.; Ma, Z.; Zhang, X.; Zou, Y.; Jin, X.; Wang, J. Angew. Chem., Int. Ed. 2004, 43, 5977.
- (14) Phosphoric acid 5 has been used as effective NMR shift reagent. See: Inanaga, J. Eur. Pat. Appl. EP-A1-1134209, 2001.
- (15) 7 would be a useful precursor of the side chain of the anticancer drug, taxol. Tosaki, S.; Tsuji, R.; Ohshima, T.; Shibasaki, M. J. Am. Chem. Soc. 2005, 127, 2147.

JA051922A